Witgensteion
Wittgenstein fragt sich im "Tractatus logico philosophicus" unter der Nummer 4.242, ob die Aussage der Identität nicht in Wirklichkeit überflüssig und also sinnlos ist. Er schreibt unter dieser Nummer:
"Ausdrücke von der Form 'a=b' sind also nur Behelfe der Darstellung; sie sagen nichts über die Bedeutung von 'a' und 'b' aus."
Diese Aussage besagt, dass zwei Zeichen "a" und "b", die dassselbe bedeuten, durcheinander ersetzt werden können, ohne dassws sich die Bedeutung des Satzes ändert. Daraus ergibt sich, dass sich aus dieser Identtität keine Schlüsse auf die Bedcetung der Zeichen ziehen lassen, die in einem solchen Ersetzungsverfhren benutzt werden. Die Ersetzbarkeit der beiden Zeichen durch einander sagt nichts über ihre Bedeutung. es handelt sich daher nicht um Aussagen über gegenstände, sondedrn uim Aussagen über Aussagen. Sie dienen nur der "Darstellung".
Soweit scheint es da kein Problem zu geben. Wittgensein scheint aber der Ansicht zuzuneigen, dass das für alle Aussagen des Typs "a=b" zutreffen. Darin kann ich ihm folgen. In diesem Papier möchte ich an einem Beispiel zeigen, dass dies nicht zutrifft. Dies Beispiel ist zugleich so gewählt, dass es - wenn ich recht habe - beweist, dsss es zahlreiche Ausdrücke der Form "a=b" gibt, bei denen die Berücksichtigung der Bedeuztung wesentlich und unverzichtbar ist.
1.Größengleichheit und Größenungleichheit
In der Diskussion dieses Satzes - wiie überhaupt in der Diskussion über Wittgensteins "Tractatus logico-philosophicus" spielt der Beispielsatz "Die Sonne ist größer als die Erde." eine Rolle. Um einen solchen Satz, der ein ungleiches Größenverhältnis uasdrückt, philosophisch angemessen analysieren zu können, gehe ich von dem Verhältnis der Größengleichheit aus, um dann die Spezifik des ungleichen Größenverhältnisses zu erfassen. Im Ausdruck der Größengleichheit ist ein qualitativer Aspekt verdeckt, der bei der Größen ungleichheit als solcher hervortritt. Die "Symmetrie" des gleichen Größenverhältnisses verdeckt diesen qualitativen Aspekt, so dasss er bei ungleichen Größenverhältniossen hervortritt.
2. Das Verhältnis der Größenmgleichheit
Gesetzt den fall "a" und "b" bezeichneten zwei gegenstände, die gleich groß seien. "Ga" bedeute die "Größe von a", "Gb" die "Größe von b". ich kann dann sagen: "Ga=Gb". Die Stellung von "Ga" zum gleichheitszeichen und die Stellung von "Gb" zum gleichheitszeichen bringen nach Wittgenstein zum Ausdruck, dass die beiden gegenstände duch die Beziehung der Größengleichheit verbunden sind. Diese Größengleichheit ist ein bestimmtes Größenverhältnis zweischen den gegenständen "a" und "b", nämlich das größenverhältnis, dasss beide gleich groß sind. Dieses Größenverhältnis kann aber nicht nur so beschrieben werden, dass bei der Formulierung vom Gegenstand "a" ausgegangen wird, und dann gesatgt wird, dass die Größe von "a" der Größe von "b" gleiche. Es ist offenbar genauso möglich, vom Gegenstand "b" auszugehen und dann zu sagen, dass seine Größe der von "a" gleiche. Es ist also ebenso möglich, dasselbe bestimmte Größenverhältnis in der Form "Gb=Ga" zu beschreiben.
Dies bringt in die Gleichung eine qualitative Differenz, die für die quantitative Bestimmtheit des Größenverhältnisses offensichtlich dann gleichgültig ist, wenn das Größenverhältnis als Größengleichheit bestimmt ist. Die Formulierung "a ist genauso groß wie b" nutzt den Gegenstand "b" dazu, die größe von "a" auszudrücken. [1]
- ↑ Ich folge nicht der Behauptung Freges, dass es Größen als solche gibt. (vgl. Gottlob Frege: Was ist eine Funktion. in: Gottlob Frege Funktion, Begriff, Bedeutung. Hrsg. Günther Patzig, göttingen 1994, s. 81ff.) Größen sind an Gegenständen. Ebensowenig ist eine Veränderung von Größen darstellbar als eine Reihe anderer Größen, wie Frege offenbar voraussetzt, wenn er die Veränderlichkeit von Größen bestreitet. Denn die Kontinuität einer solchen Veränderung lässt sich durch Reihen anderer größen nicht ausdrücken. Sie muss bei einem solchen Versuch in aneinandergereihte Diskreta aufgelöst werden.